17 research outputs found

    Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome

    Get PDF
    The results presented in this paper have not been published previously in whole or in part. The work reported in this paper was supported by grants from the BBSRC awarded to M.R.E (BB/M001644/1) and J.H.S. (BB/M001032/1). L.A.Y.G is supported by a PhD studentship awarded by the Mexican Council of Science and Technology (CONACyT studentship no. 418612) and Queen Mary University of London. We are grateful to Philipp Bauknecht and Gáspár Jékely (Max Planck Institute for Developmental Biology, Tübingen, Germany) for providing the Gα16 plasmid and the CHO-G5A cells, which were originally generated by Baubet et al. (Proc Natl Acad Sci USA 97:7260–7265). We are also grateful to Phil Edwards for his help with collecting starfish, Paul Fletcher for maintaining our seawater aquarium and Maria Eugenia Guerra for creating the silhouettes of animals used in Figure 7

    Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration

    Get PDF
    The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease

    The neurotrophin receptor p75(NTR) : novel functions and implications for diseases of the nervous system

    No full text
    Neurotrophins have long been known to promote the survival and differentiation of vertebrate neurons. However, these growth factors can also induce cell death through the p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor receptor superfamily. Consistent with a function in controlling the survival and process formation of neurons, p75(NTR) is mainly expressed during early neuronal development. In the adult, p75(NTR) is re-expressed in various pathological conditions, including epilepsy, axotomy and neurodegeneration. Potentially toxic peptides, including the amyloid beta- (Abeta-) peptide that accumulates in Alzheimer's disease, are ligands for p75(NTR). Recent work also implicates p75(NTR) in the regulation of both synaptic transmission and axonal elongation. It associates with the Nogo receptor, a binding protein for axonal growth inhibitors, and appears to be the transducing subunit of this receptor complex
    corecore